Contents

• Part 1
 – What is flavour physics & why is it interesting?

• Part 2
 – What do we know from previous experiments?

• Part 3
 – What do we hope to learn from current experiments?

• Part 4
 – The future of flavour physics
Flavour for new physics discoveries
A lesson from history

- New physics shows up at precision frontier before energy frontier
 - GIM mechanism before discovery of charm
 - CP violation / CKM before discovery of bottom & top
 - Neutral currents before discovery of Z

- Particularly sensitive – loop processes
 - Standard Model contributions suppressed / absent
 - Flavour changing neutral currents (rare decays)
 - CP violation
 - Lepton flavour / number violation / lepton universality
The GIM mechanism

\[K^+ \rightarrow \mu^+ \nu_\mu \& \pi^0 \mu^+ \nu_\mu \] so why not \[K^0 \rightarrow \mu^+ \mu^- \& \pi^0 \mu^+ \mu^- \]?

- GIM (Glashow, Iliopoulos, Maiani) mechanism (1970)
 - no tree level flavour changing neutral currents
 - suppression of FCNC via loops
- Requires that quarks come in pairs (predicting charm)

\[
A = V_{us} V_{ud}^* f(m_u/m_W) + V_{cs} V_{cd}^* f(m_c/m_W)
\]

2x2 unitarity: \[V_{us} V_{ud}^* + V_{cs} V_{cd}^* = 0 \]

\[m_u, m_c < m_W \therefore f(m_u/m_W) \sim f(m_c/m_W) \therefore A \sim 0 \]

kaon mixing \(\Rightarrow\) predict \(m_c\)

Tim Gershon

Flavour & CPV
Discovery of charm

- J (Ting; BNL)/ψ (Richter, SLAC) discovery, 1974
Lepton flavour violation

• Why do we not observe the decay $\mu \rightarrow e \gamma$?
 – exact (but accidental) lepton flavour conservation in the SM with $m_\nu = 0$
 – SM loop contributions suppressed by $(m_\nu / m_W)^4$
 – but new physics models tend to induce larger contributions
 • unsuppressed loop contributions
 • generic argument, true in most common models
The muon to electron gamma (MEG) experiment at PSI

\[\mu^+ \rightarrow e^+\gamma \]

- positive muons → no muonic atoms
- continuous (DC) muon beam → minimise accidental coincidences
MEG results

$B(\mu^+ \rightarrow e^+ \gamma) < 5.7 \times 10^{-13} @ 90\% \text{ CL}$

arXiv:1303.0754
Prospects for Lepton Flavour Violation

- MEG still taking data; and a further upgrade is planned
- New generations of $\mu - e$ conversion experiments
 - COMET at J-PARC, followed by PRISM/PRIME
 - $\mu 2e$ at FNAL, followed by Project X
 - Potential improvements of $O(10^4) - O(10^6)$ in sensitivities!
- τ LFV a priority for next generation e^+e^- flavour factories
 - SuperKEKB/Belle2 at KEK & potential τ-charm factories
 - $O(100)$ improvements in luminosity $\rightarrow O(10) - O(100)$ improvements in sensitivity (depending on background)
 - LHC experiments have some potential to improve $\tau \rightarrow \mu \mu \mu$

Tim Gershon
Flavour & CPV
Neutral meson oscillations

- We have flavour eigenstates M^0 and \bar{M}^0
 - M^0 can be K^0 (sd), D^0 (cu), B^0_d (bd) or B^0_s (bs)
- These can mix into each other
 - via short-distance or long-distance processes
- **Time-dependent Schrödinger eqn.**
 \[
i \frac{\partial}{\partial t} \begin{pmatrix} M^0 \\ \bar{M}^0 \end{pmatrix} = H \begin{pmatrix} M^0 \\ \bar{M}^0 \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} M^0 \\ \bar{M}^0 \end{pmatrix}
 \]
 - H is Hamiltonian; M and Γ are 2x2 Hermitian matrices
- **CPT theorem:** $M_{11} = M_{22}$ & $\Gamma_{11} = \Gamma_{22}$

Particle and antiparticle have equal masses and lifetimes

Tim Gershon
Flavour & CPV
Solving the Schrödinger equation

- Physical states: eigenstates of effective Hamiltonian

\[M_{S,L} = p \, M^0 \pm q \, \bar{M}^0 \]

\(p \) & \(q \) complex coefficients that satisfy \(|p|^2 + |q|^2 = 1 \)

label as either S,L (short-, long-lived) or L,H (light, heavy) depending on values of \(\Delta m \) & \(\Delta \Gamma \)

\(\Delta \Gamma = \Gamma_S - \Gamma_L \)

- CP conserved if physical states = CP eigenstates (\(|q/p| = 1\))

- Eigenvalues

\[\lambda_{S,L} = m_{S,L} - \frac{1}{2}i\Gamma_{S,L} = (M_{11} - \frac{1}{2}i\Gamma_{11}) \pm (q/p)(M_{12} - \frac{1}{2}i\Gamma_{12}) \]

\[\Delta m = m_L - m_S \]

\[\Delta \Gamma = \Gamma_S - \Gamma_L \]

\[(\Delta m)^2 - \frac{1}{4}(\Delta \Gamma)^2 = 4(|M_{12}|^2 + \frac{1}{4}|\Gamma_{12}|^2) \]

\[\Delta m \Delta \Gamma = 4 \text{Re}(M_{12} \Gamma_{12}^*) \]

\[(q/p)^2 = (M_{12}^* - \frac{1}{2}i\Gamma_{12}^*)/(M_{12} - \frac{1}{2}i\Gamma_{12}) \]
Simplistic picture of mixing parameters

- Δm: value depends on rate of mixing diagram
 - together with various other constants ...
 \[\Delta m_d = \frac{G_F^2}{6\pi^2} m_w^2 \eta_b S(x_t) m_{B_d} f_{B_d}^2 \hat{B}_{B_d} |V_{tb}|^2 |V_{td}|^2 \]
 - that can be made to cancel in ratios
 \[\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 \hat{B}_{B_d}}{m_{B_s} f_{B_s}^2 \hat{B}_{B_s}} \frac{|V_{td}|^2}{|V_{ts}|^2} \]

- $\Delta \Gamma$: value depends on widths of decays into common final states (CP-eigenstates)
 - large for K^0, small for D^0 & B_d^0

- $q/p \approx 1$ if $\arg(\Gamma_{12}/M_{12}) \approx 0$ ($|q/p| \approx 1$ if $M_{12} \ll \Gamma_{12}$ or $M_{12} \gg \Gamma_{12}$)
 - CP violation in mixing when $|q/p| \neq 1$
 \[\epsilon = \frac{p-q}{p+q} \neq 0 \]
Simplistic picture of mixing parameters

| | Δm (x = $\Delta m/\Gamma$) | $\Delta \Gamma$ (y = $\Delta \Gamma/(2\Gamma)$) | $|q/p|$ (a$_s$ $\approx 1 - |q/p|^2$) |
|-------|-----------------------------------|---|----------------------------------|
| K^0 | large | \sim maximal | small |
| | \sim 500 | \sim 1 | $(3.32 \pm 0.06) \times 10^{-3}$ |
| D^0 | small | small | small |
| | $(0.63 \pm 0.19)\%$ | $(0.75 \pm 0.12)\%$ | $0.52^{+0.19}_{-0.24}$ |
| B^0 | medium | small | small |
| | 0.770 ± 0.008 | 0.008 ± 0.009 | -0.0003 ± 0.0021 |
| B_s^0 | large | medium | small |
| | 26.49 ± 0.29 | 0.075 ± 0.010 | -0.0109 ± 0.0040 |

- Well-measured only recently (see later)
- More precise measurements needed (SM prediction well known)
Constraints on NP from mixing

- All measurements of Δm & $\Delta \Gamma$ consistent with SM
 - K^0, D^0, B_d^0, and B_s^0
- This means $|A_{NP}| < |A_{SM}|$ where

\[A_{SM}^{AF=2} \approx \frac{G_F^2 m_t^2}{16\pi^2} (V_{ti}V_{tj})^2 \times \langle M | (\bar{Q}_L i \gamma^\mu Q_L) | M \rangle \times F \left(\frac{M_W^2}{m_t^2} \right) \]

- Express NP as perturbation to the SM Lagrangian
 - couplings c_i and scale $\Lambda > m_W$

\[\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)} (SM \ fields) \]

- For example, SM like (left-handed) operators

\[\Delta \mathcal{L}^{AF=2} = \sum_{i \neq j} \frac{c_{ij}}{\Lambda^2} (\bar{Q}_L i \gamma^\mu Q_L)^2 \]
Constraints on NP from mixing

<table>
<thead>
<tr>
<th>Operator</th>
<th>Bounds on Λ in TeV ($c_{ij} = 1$)</th>
<th>Bounds on c_{ij} ($\Lambda = 1$ TeV)</th>
<th>Observables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Re</td>
<td>Im</td>
<td>Re</td>
</tr>
<tr>
<td>$(\bar{s}_L \gamma^\mu d_L)^2$</td>
<td>9.8×10^2</td>
<td>1.6×10^4</td>
<td>9.0×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{s}_R d_L)(\bar{s}_L d_R)$</td>
<td>1.8×10^4</td>
<td>3.2×10^5</td>
<td>6.9×10^{-9}</td>
</tr>
<tr>
<td>$(\bar{c}_L \gamma^\mu u_L)^2$</td>
<td>1.2×10^3</td>
<td>2.9×10^3</td>
<td>5.6×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{c}_R u_L)(\bar{c}_L u_R)$</td>
<td>6.2×10^3</td>
<td>1.5×10^4</td>
<td>5.7×10^{-8}</td>
</tr>
<tr>
<td>$(\bar{b}_L \gamma^\mu d_L)^2$</td>
<td>5.1×10^2</td>
<td>9.3×10^2</td>
<td>3.3×10^{-6}</td>
</tr>
<tr>
<td>$(\bar{b}_R d_L)(\bar{b}_L d_R)$</td>
<td>1.9×10^3</td>
<td>3.6×10^3</td>
<td>5.6×10^{-7}</td>
</tr>
<tr>
<td>$(\bar{b}_L \gamma^\mu s_L)^2$</td>
<td>1.1×10^2</td>
<td></td>
<td>7.6×10^{-5}</td>
</tr>
<tr>
<td>$(\bar{b}_R s_L)(\bar{b}_L s_R)$</td>
<td>3.7×10^2</td>
<td></td>
<td>1.3×10^{-5}</td>
</tr>
</tbody>
</table>
Similar story – but including more (& more up-to-date) inputs, and in pictures

arXiv:1203.0238

Tim Gershon
Flavour & CPV
New Physics Flavour Problem

- Limits on NP scale at least 100 TeV for generic couplings
 - model-independent argument, also for rare decays
- But we need NP at “the TeV scale” to solve the hierarchy problem (and to provide DM candidate, etc.)
- So we need NP flavour-changing couplings to be small
- Why?
 - minimal flavour violation?
 - perfect alignment of flavour violation in NP and SM
 - some other approximate symmetry?
 - flavour structure tells us about physics at very high scales
- There are still important observables that are not yet well-tested
What do we know about heavy quark flavour physics as of today?
CKM Matrix : parametrizations

- Many different possible choices of 4 parameters
- PDG: 3 mixing angles and 1 phase

\[V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & s_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{13}e^{-i\delta} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \]

- Apparent hierarchy: \(s_{12} \sim 0.2, s_{23} \sim 0.04, s_{13} \sim 0.004 \)
 - Wolfenstein parametrization (expansion parameter \(\lambda \sim \sin \theta_c \sim 0.22 \))

\[V = \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2} \lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \]

- Other choices, eg. based on CP violating phases

Tim Gershon
Flavour & CPV
Hierarchy in quark mixing

$$V = \begin{pmatrix}
1 - \frac{1}{2} \lambda^2 & \frac{\lambda}{A} & A \lambda^3 (\rho - i \eta) \\
-\lambda & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\
A \lambda^3 (1 - \rho - i \eta) & -A \lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)$$

Very suggestive pattern
No known underlying reason
Situation for leptons (vs) is completely different
Unitarity Tests

- The CKM matrix must be unitary

\[V_{CKM}^+ V_{CKM} = V_{CKM} V_{CKM}^+ = 1 \]

- Provides numerous tests of constraints between independent observables, such as

\[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \]
\[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \]
CKM Matrix – Magnitudes

\[
\begin{pmatrix}
0.97425 \pm 0.00022 \\
0.2252 \pm 0.0009 \\
0.230 \pm 0.011 \\
0.2252 \pm 0.0009 \\
1.023 \pm 0.036 \\
(8.4 \pm 0.6) \times 10^{-3} \\
(38.7 \pm 2.1) \times 10^{-3} \\
(8.4 \pm 0.6) \times 10^{-3} \\
(38.7 \pm 2.1) \times 10^{-3} \\
0.2252 \pm 0.0009 \\
0.88 \pm 0.07 \\
(3.89 \pm 0.44) \times 10^{-3} \\
(40.6 \pm 1.3) \times 10^{-3}
\end{pmatrix}
\]

superallowed $0^+ \to 0^+ \beta$ decays
semileptonic / leptonic kaon decays
hadronic tau decays
semileptonic / leptonic B decays

semileptonic charm decays
charm production in neutrino beams

B_d oscillations
semileptonic / leptonic charm decays

B_s oscillations
semileptonic / leptonic charm decays

PDG 2010

theory inputs (eg., lattice calculations) required
The Unitarity Triangle

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Three complex numbers add to zero
⇒ triangle in Argand plane

Axes are $\bar{\rho}$ and $\bar{\eta}$ where

$$\bar{\rho} + i \bar{\eta} = -\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}$$

$$\rho + i \eta = \frac{\sqrt{1 - A^2 \lambda^4 (\bar{\rho} + i \bar{\eta})}}{\sqrt{1 - \lambda^2 [1 - A^2 \lambda^4 (\bar{\rho} + i \bar{\eta})]}}$$

Tim Gershon
Flavour & CPV
Predictive nature of KM mechanism

In the Standard Model the KM phase is the sole origin of CP violation

Hence:
all measurements must agree on the position of the apex of the Unitarity Triangle

(Illustration shown assumes no experimental or theoretical uncertainties)
Time-Dependent CP Violation in the $B^0 - \bar{B}^0$ System

- For a B meson known to be 1) B^0 or 2) \bar{B}^0 at time $t=0$, then at later time t:

\[
\Gamma (B^0_{phys} \rightarrow f_{CP}(t)) \propto e^{-\Gamma t} \left| 1 - (S \sin(\Delta m t) - C \cos(\Delta m t)) \right|
\]
\[
\Gamma (\bar{B}^0_{phys} \rightarrow f_{CP}(t)) \propto e^{-\Gamma t} \left| 1 + (S \sin(\Delta m t) - C \cos(\Delta m t)) \right|
\]

here assume $\Delta \Gamma$ negligible – will see full expressions later

\[
S = \frac{2 \Im(\lambda_{CP})}{1 + |\lambda_{CP}^2|} \quad C = \frac{1 - |\lambda_{CP}^2|}{1 + |\lambda_{CP}^2|} \quad \lambda_{CP} = \frac{q \bar{A}}{p \ A}
\]

For $B^0 \rightarrow J/\psi K_S$, $S = \sin(2\beta)$, $C=0$

NPB 193 (1981) 85
Categories of CP violation

- Consider decay of neutral particle to a CP eigenstate

\[\lambda_{CP} = \frac{q}{p} \frac{\overline{A}}{A} \]

- \(|\frac{q}{p}| \neq 1 \) (CP violation in mixing)

- \(|\frac{\overline{A}}{A}| \neq 1 \) (CP violation in decay (direct CPV))

- \(\Im \left(\frac{q}{p} \frac{\overline{A}}{A} \right) \neq 0 \) (CP violation in interference between mixing and decay)
Asymmetric B factory principle

To measure t require B meson to be moving
 $\rightarrow e^+e^-$ at threshold with asymmetric collisions (Oddone)

Other possibilities considered
 \rightarrow fixed target production?
 \rightarrow hadron collider?
 \rightarrow e^+e^- at high energy?

Tim Gershon
Flavour & CPV
Asymmetric B Factories

PEPII at SLAC
9.0 GeV e⁻ on 3.1 GeV e⁺

KEKB at KEK
8.0 GeV e⁻ on 3.5 GeV e⁺

Tim Gershon
Flavour & CPV
B factories – world record luminosities

~ 433/fb on Y(4S)

~ 711/fb on Y(4S)

Total over 10^9 $B\bar{B}$ pairs recorded
World record luminosities (2)
BaBar Detector

- **DIRC (PID)**
 - 144 quartz bars
 - 11000 PMs

- **1.5 T solenoid**

- **EMC**
 - 6580 CsI(Tl) crystals

- **Drift Chamber**
 - 40 stereo layers

- **Silicon Vertex Tracker**
 - 5 layers, double sided strips

- **e^+ (3.1 GeV)**

- **e^- (9 GeV)**

- **Instrumented Flux Return**
 - Iron / RPCs (muon / neutral hadrons)
 - 2/6 replaced by LST in 2004
 - Rest of replacement in 2006

Tim Gershon
Flavour & CPV
Belle Detector

- SC solenoid 1.5T
- CsI(Tl) $16X_0$
- TOF counter
- Aerogel Cherenkov cnt. $n=1.015\sim1.030$
- 3.5 GeV e^+
- 8 GeV e^-
- Central Drift Chamber small cell +He/C$_2$H$_6$
- Si vtx. det.
 - 3 lyr. DSSD
 - 4 lyr. since summer 2003
- μ / K_L detection
 - 14/15 lyr. RPC+Fe

Tim Gershon
Flavour & CPV
Results for the golden mode

\[B^0 \rightarrow J/\psi K^0 \]

BABAR

\[\eta_f = -1 \]

\[\eta_f = +1 \]

BELLE

PRD 79 (2009) 072009

PRL 108 (2012) 171802
Compilation of results

\[\sin(2\beta) \equiv \sin(2\phi_1) \]

Everything is here

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar</td>
<td>PRD 79 (2009); 072009</td>
<td>0.69 ± 0.03 ± 0.01</td>
</tr>
<tr>
<td>BaBar (\chi_{2}, K_{S})</td>
<td>PRD 80 (2009); 112001</td>
<td>0.69 ± 0.52 ± 0.04 ± 0.07</td>
</tr>
<tr>
<td>BaBar (J/\psi) (hadronic) (K_{S})</td>
<td>PRD 69 (2004); 052001</td>
<td>1.56 ± 0.42 ± 0.21</td>
</tr>
<tr>
<td>Belle</td>
<td>PRL 108 (2012); 171802</td>
<td>0.67 ± 0.02 ± 0.01</td>
</tr>
<tr>
<td>ALEPH</td>
<td>PLB 492, 259 (2000)</td>
<td>0.84^{+0.82}_{-1.04} ± 0.16</td>
</tr>
<tr>
<td>OPAL</td>
<td>EPJ C5, 379 (1998)</td>
<td>3.20^{+1.80}_{-2.00} ± 0.50</td>
</tr>
<tr>
<td>CDF</td>
<td>PRD 61, 072005 (2000)</td>
<td>0.79^{+0.41}_{-0.44}</td>
</tr>
<tr>
<td>LHCb</td>
<td>LHCb-CONF-2011-004</td>
<td>0.53^{+0.28}_{-0.26} ± 0.05</td>
</tr>
<tr>
<td>Belle5S</td>
<td>PRL 108 (2012); 171801</td>
<td>0.57 ± 0.58 ± 0.06</td>
</tr>
<tr>
<td>Average</td>
<td>HFAQ</td>
<td>0.68 ± 0.02</td>
</tr>
</tbody>
</table>
Compilation of results

\[
\sin(2\beta) = \sin(2\phi_1)
\]

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>LHCb result using J/ψ K_s not included</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J/\psi \ K_s)</td>
<td>0.665 ± 0.024</td>
<td>0.73 ± 0.07 ± 0.04</td>
</tr>
<tr>
<td>(J/\psi \ K_L)</td>
<td>0.663 ± 0.041</td>
<td></td>
</tr>
<tr>
<td>(\psi(2S) \ K_s)</td>
<td>0.807 ± 0.067</td>
<td></td>
</tr>
<tr>
<td>(\chi_{c1} \ K_s)</td>
<td>0.632 ± 0.099</td>
<td></td>
</tr>
</tbody>
</table>
R_t side from $B^0 - B^0$ mixing

$$R_t = \left| \frac{V_{td}}{V_{cd}} \right| \frac{V_{tb}^*}{V_{cb}^*} \quad \& \quad \frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 \hat{B}_{B_d}}{m_{B_s} f_{B_s}^2 \hat{B}_{B_s}} \left| \frac{V_{td}}{V_{ts}} \right|^2$$

World average based on many measurements

$P(\Delta t) = (1 \pm \cos(\Delta m \Delta t)) e^{i\Delta t}/2\tau$

$\Delta m_d = (0.511 \pm 0.005 \pm 0.006) \text{ ps}^{-1}$

PRD 71, 072003 (2005)

$\Delta m_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1}$

PRL 97, 242003 (2006)

$\left| \frac{V_{td}}{V_{ts}} \right| = 0.211 \pm 0.001 \pm 0.005$

Tim Gershon
Flavour & CPV
R_t side from $B^0 - B^0$ mixing

$$R_t = \left| \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right|$$

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d} f_{B_d}^2 \frac{\Lambda}{B_{B_d}}} {m_{B_s} f_{B_s}^2 \frac{\Lambda}{B_{B_s}}} \left| \frac{V_{td}}{V_{ts}} \right|^2$$

World average based on many measurements

$P(\Delta t) = (1 \pm \cos(\Delta m \Delta t)) e^{i|\Delta t|/2\tau}$

$\Delta m_d = (0.511 \pm 0.005 \pm 0.006) \text{ ps}^{-1}$

$\Delta m_s = (17.768 \pm 0.023 \pm 0.006) \text{ ps}^{-1}$

PRD 71, 072003 (2005)

NJP 15 (2013) 053021

$\left| \frac{V_{td}}{V_{ts}} \right| = 0.211 \pm 0.001 \pm 0.005$

Tim Gershon
Flavour & CPV
\[R_u = \left| \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right| \]

\textbf{Approaches:}

- **exclusive semileptonic B decays**, eg. \(B^0 \rightarrow \pi^- e^+ \nu \)
 - require knowledge of form factors
 - can be calculated in lattice QCD at kinematical limit

- **inclusive semileptonic B decays**, eg. \(B \rightarrow X_u e^+ \nu \)
 - clean theory, based on Operator Product Expansion
 - experimentally challenging:
 - need to reject \(b \rightarrow c \) background
 - cuts re-introduce theoretical uncertainties
\[|V_{ub}| \text{ from exclusive semileptonic decays} \]

Current best measurements use \(B^0 \to \pi^- l^+ \nu \)

BaBar experiment
PRD 83 (2011) 052011
PRD 83 (2011) 032007

Belle experiment
PRD 83 (2011) 071101(R)

\[|V_{ub}| = (3.09 \pm 0.08 \pm 0.12 \pm 0.08 \pm 0.12 \times 10^{-3} \]

lattice uncertainty

\[|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3} \]

Tim Gershon
Flavour & CPV
$|V_{ub}|$ from inclusive semileptonic decays

- Main difficulty to measure inclusive $B \to X_u l^+ \nu$
 - background from $B \to X_c l^+ \nu$

- Approaches
 - cut on E_l (lepton endpoint), q^2 ($l\nu$ invariant mass squared), $M(X_u)$, or some combination thereof

- Example: endpoint analysis

Tim Gershon
Flavour & CPV
|\[V_{ub} \text{ }|\text{ inclusive - compilation}\]

Different theoretical approaches (2 of 4 used by HFAG)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEO (E^3)</td>
<td>3.83 ± 0.45 + 0.32 - 0.33</td>
</tr>
<tr>
<td>BELLE sin. ann. (m_\tau, q^*)</td>
<td>4.23 ± 0.45 + 0.29 - 0.30</td>
</tr>
<tr>
<td>BELLE (E^3)</td>
<td>4.64 ± 0.43 + 0.29 - 0.31</td>
</tr>
<tr>
<td>BABAR (E^3)</td>
<td>4.18 ± 0.24 + 0.29 - 0.31</td>
</tr>
<tr>
<td>BABAR (E_\mu, \xi^\mu)</td>
<td>4.28 ± 0.29 + 0.36 - 0.37</td>
</tr>
<tr>
<td>BELLE (m_\tau)</td>
<td>3.90 ± 0.26 + 0.24 - 0.26</td>
</tr>
<tr>
<td>BABAR (m_\tau)</td>
<td>4.02 ± 0.19 + 0.27 - 0.29</td>
</tr>
<tr>
<td>BABAR (m_\tau, q^*)</td>
<td>4.32 ± 0.28 + 0.29 - 0.31</td>
</tr>
<tr>
<td>BABAR (P^+)</td>
<td>3.65 ± 0.24 + 0.25 - 0.37</td>
</tr>
</tbody>
</table>

Average +/- exp + theory - theory
4.06 ± 0.15 + 0.25 - 0.37

\(\chi^2/\text{dof} = 13.08 \, (\text{CL} = 99.00 \%)\)

Brod, Leung, Nueburt and Piz (BLNP)

\(\chi^2/\text{dof} = 7.17 \, (\text{CL} = 52.00 \%)\)
Anderson and Gersa (DGE)
JHEP 0601:097, 2006
E. Gersa at X04 0803.4524

Tim Gershon
Flavour & CPV
\[|V_{ub}| \text{ average} \]

- Averages on \(|V_{ub}|\) from both exclusive and inclusive approaches
 - exclusive: \(|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3} \)
 - inclusive: \(|V_{ub}| = (4.41 \pm 0.22) \times 10^{-3} \)
 - slight tension between these results
 - in both cases theoretical errors are dominant
 - but some “theory” errors can be improved with more data
 - PDG2012 does naïve average rescaling due to inconsistency to obtain \(|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3} \)
Partial summary

Adding a few other constraints we find

\[\rho = 0.132 \pm 0.020 \]
\[\eta = 0.358 \pm 0.012 \]

Consistent with Standard Model fit
- some “tensions”

Still plenty of room for new physics
Measurement of α

- Similar analysis using $b \rightarrow u\bar{u}d$ decays (e.g. $B_d^0 \rightarrow \pi^+\pi^-$) probes $\pi-(\beta+\gamma) = \alpha$
 - but $b \rightarrow du\bar{u}$ penguin transitions contribute to same final states ⇒ “penguin pollution”
 - $C \neq 0 \leftrightarrow$ direct CP violation can occur
 - $S \neq +\eta_{CP} \sin(2\alpha)$

- Two approaches (optimal approach combines both)
 - try to use modes with small penguin contribution
 - correct for penguin effect (isospin analysis)

PRL 65 (1990) 3381
Experimental Situation

\(\pi^+ \pi^- S_{CP} \text{ vs } C_{CP} \)

- Large CP violation
- Large penguin effect

\(\rho^+ \rho^- S_{CP} \text{ vs } C_{CP} \)

- Small CP violation
- Small penguin effect

Tim Gershon
Flavour & CPV

improved measurements needed!
Measurement of α

$\alpha = (89.0^{+4.4}_{-4.2})^\circ$

Is there any physical significance in the fact that $\alpha \approx 90^\circ$?